We prove a version of the implicit function theorem for Lipschitz mappings ƒ : ℝn+m ⊃ A → X into arbitrary metric spaces. As long as the pull-back of the Hausdorff content H ∞ n by ƒ has positive ...
Fourier analysis provides a powerful framework for decomposing functions into sums or integrals of sinusoidal components, thereby enabling the study of frequency content in signals. In tandem, ...
This is a preview. Log in through your library . Abstract We present a local convergence analysis of a two-step Gauss-Newton method under the generalized and classical Lipschitz conditions for the ...